Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Aims Microbiology ; 9(3):431-443, 2023.
Article in English | Web of Science | ID: covidwho-20231397

ABSTRACT

To minimize health risks, surrogates are often employed to reduce experiments with pathogenic microorganisms and the associated health risk. Due to structural similarities between the enveloped RNA -viruses SARS-CoV-2 and Phi6, the latter has been established as a nonpathogenic coronavirus surrogate for many applications. However, large discrepancies in the UV log-reduction doses between SARS-CoV-2 and Phi6 necessitate the search for a better surrogate for UV inactivation applications. A literature study provided the bacteriophage PhiX174 as a potentially more suitable nonpathogenic coronavirus surrogate candidate. In irradiation experiments, the sensitivity of PhiX174 was investigated upon exposure to UV radiation of wavelengths 222 nm (Far-UVC), 254 nm (UVC), 302 nm (broad-band UVB), 311 nm (narrow-band UVB) and 366 nm (UVA) using a plaque assay. The determined log-reduction doses for PhiX174 were 1.3 mJ/cm2 @ 222 nm, 5 mJ/cm2 @ 254 nm, 17.9 mJ/cm2 @ 302 nm, 625 mJ/cm2 @ 311 nm and 42.5 J/cm2 @ 366 nm. The comparison of these results with published log-reduction doses of SARS-CoV-2 in the same spectral region, led to the conclusion that the bacteriophage PhiX174 exhibits larger log-reduction doses than SARS-CoV-2, nevertheless, it is a better UV-surrogate at 222 nm (Far-UVC), 254 nm (UVC) and 302 nm (UVB) than the often applied Phi6.

2.
Opt Mater (Amst) ; 140: 113866, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2315983

ABSTRACT

Disinfection with far UV-C radiation (<230 nm) is an effective method to inactivate harmful microorganisms like the SARS-CoV2 virus. Due to the stronger absorption than regular UV-C radiation (254 nm) and hence limited penetration into human tissues, it has the promise of enabling disinfection in occupied spaces. The best far-UV sources so far are discharge lamps based on the KrCl* excimer discharge peaking at 222 nm, however they produce longer wavelength radiation as a by-product. In current KrCl* excimer lamps usually a dichroic filter is used to suppress these undesired longer wavelengths. A phosphor-based filter is an alternative which is cheaper and easier to apply. This paper describes the results of our exploration of this opportunity. Various compounds were synthesized and characterized to find a replacement for the dichroic filter. It was found that Bi3+-doped ortho-borates with the pseudo-vaterite crystal structure exhibit the best absorption spectrum i.e. high transmission around 222 nm and strong absorption in the 235-280 nm range. Y0.24Lu0.75Bi0.01BO3 showed the best absorption spectrum in the UV-C. To suppress the unwanted Bi3+ emission (UV-B), the excitation energy can be transferred to a co-dopant. Ho3+ turned out to be the best co-dopant, and Ho0.24Lu0.75Bi0.01BO3 appeared to be the best overall candidate for the phosphor filter material. A suitable formulation for a coating suspension containing this material was found, and quite homogeneous coatings were achieved. The efficiency of these filter layers was investigated and the results in terms of exposure limit increase i.e. gain factor vs. no filter were compared with the dichroic filter. We achieved a gain factor for the Ho3+ containing sample of up to 2.33, i.e. not as good as that of the dichroic filter (∼4.6), but a very relevant improvement, making Ho0.24Lu0.75Bi0.01BO3 an interesting material for a cost-effective filter for KrCl* far UV-C lamps.

3.
J Environ Chem Eng ; 11(3): 110040, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2309988

ABSTRACT

Microplasma UV lamps have recently emerged as viable excimer-based sources of UV radiation, garnering significant attention during the recent COVID-19 pandemic for their use in disinfection applications because of their ability to emit human-safe far-UVC (200-240 nm) spectrums. An accurate model to simulate the radiation profile of microplasma UV lamps is of paramount importance to develop efficient microplasma lamp-implemented systems. We developed a 3D numerical model of microplasma UV lamps using the ray optics method. The simulation results for lamp irradiance and fluence rate were experimentally validated with standard optical radiometry and actinometry measurements, respectively. To improve the optical efficiency of microplasma lamps, an in-depth analysis of radiation behavior inside the standard commercially available lamp was performed using the geometrical optics method, and several potential scenarios were explored. A 2D modeling of an individual microcavity indicated that the current common lamp design can be significantly improved by preventing radiation loss, and small modifications in optical design can greatly increase the energy performance of the system. Based on the findings of this study, several virtual design concepts were proposed, and their performances were numerically compared with that of the original design of commercial microplasma lamps. The developed model can potentially be integrated with hydrodynamic and kinetic models for the virtual prototyping of complex photoreactors operating with UV microplasma lamps.

4.
Building and Environment ; 236, 2023.
Article in English | Scopus | ID: covidwho-2305491

ABSTRACT

222-nm Far-UVC light is an emerging and promising tool for rapidly inactivating airborne pathogens. In this study, we experimentally evaluated the performance of a 222-nm Far-UVC upper-room disinfection system with a 15 W Far-UVC lamp in a full-scale chamber (11.9 m3). One gram-positive bacteria, namely Staphylococcus epidermidis and two gram-negative bacteria, namely Escherichia coli and Salmonella enterica were selected for the experiments. The aerosolized bacteria were injected into the chamber and exposed to 222-nm Far-UVC light. The first-order decay rates of indoor bioaerosols concentration with and without Far-UVC treatment were estimated. According to the results, the 222-nm Far-UVC induced decay rates of three bacteria were 0.0611 ± 0.003, 0.409 ± 0.048, and 0.474 ± 0.015 min−1, respectively. Besides, the UV susceptibility constants (Z-values) of these three bacteria were estimated as 0.157, 0.974, and 1.18 m2/J, respectively. The gram-positive bacteria, S. epidermidis, showed higher resistance to Far-UVC light as compared to the gram-negative bacteria, E. coli and S. enterica. In addition, a case study on airborne SARS-CoV-2 indoor transmission was simulated, and the infection risk of SARS-CoV-2 was compared using the Far-UVC and enhanced ventilation approaches. The results showed that both UV inactivation and ventilation approaches can significantly reduce the infection risk. More importantly, the Far-UVC may be a feasible and sustainable solution for reducing infection risk and improving indoor air quality. © 2023 Elsevier Ltd

5.
Applied Sciences (Switzerland) ; 13(7), 2023.
Article in English | Scopus | ID: covidwho-2294449

ABSTRACT

The use of 222 nm far-UVC radiation can be an effective means of disinfecting public buses against viruses, including SARS-CoV-2. However, it can cause degradation of the mechanical and visual properties of interior materials. The purpose of this study is to investigate the effects of 222 nm far-UVC radiation on the color and mechanical degradation of materials used to construct public bus interiors. This research work involves exposure of samples of materials commonly used in bus interiors to various levels of far-UVC radiation and measuring and evaluating changes in color and mechanical properties. The results of the study showed that far-UVC irradiation causes significant color degradation (∆E00 >5) in all the polymeric materials tested, after 290 J/cm2 radiant exposure. In addition, significant changes in mechanical properties were observed when evaluating elasticity modulus, elongation at ultimate strength, elongation at break, and tensile strength. A particularly large decrease in elongation at break (up to 26%) was observed in fiber-reinforced composite materials. The results of this study can be used as a guide for the development of protocols for the use of far-UVC disinfection in public transportation, which can help limit the transmission of infections while preserving the integrity and visual properties of bus interior materials. © 2023 by the authors.

6.
Applied Sciences (Switzerland) ; 13(3), 2023.
Article in English | Scopus | ID: covidwho-2285294

ABSTRACT

Featured Application: An LED strip with 405 nm LEDs can be developed and installed in places such as inside the shelves in a retail store. The LED will provide continuous disinfection of the highly touched areas. Installing on the shelves will ensure faster disinfection, as the distance between the LED strip and surface will be approximately 10~20 cm. The ongoing coronavirus pandemic requires more effective disinfection methods. Disinfection using ultraviolet light (UV), especially longer UVC wavelengths, such as 254 and 270/280 nm, has been proven to have virucidal properties, but its adverse effects on human skin and eyes limit its use to enclosed, unoccupied spaces. Several studies have shown the effectiveness of blue light (405 nm) against bacteria and fungi, but the virucidal property at 405 nm has not been much investigated. Based on previous studies, visible light mediates inactivation by absorbing the porphyrins and reacting with oxygen to produce reactive oxygen species (ROS). This causes oxidative damage to biomolecules, such as proteins, lipids, and nucleic acids, essential constituents of any virus. The virucidal potential of visible light has been speculated because the virus lacks porphyrins. This study demonstrated porphyrin-independent viral inactivation and conducted a comparative analysis of the effectiveness at 405 nm against other UVC wavelengths. The betacoronavirus 1 (strain OC43) was exposed to 405, 270/280, 254, and 222 nm, and its efficacy was determined using a median tissue culture infectious dose, i.e., TCID50. The results support the disinfection potential of visible light technology by providing a quantitative effect that can serve as the basic groundwork for future visible light inactivation technologies. In the future, blue light technology usage can be widened to hospitals, public places, aircraft cabins, and/or infectious laboratories for disinfection purposes. © 2023 by the authors.

7.
Critical Reviews in Environmental Science and Technology ; 53(6):733-753, 2023.
Article in English | Scopus | ID: covidwho-2239235

ABSTRACT

Far UV-C, informally defined as electromagnetic radiation with wavelengths between 200 and 230 nm, has characteristics that are well-suited to control of airborne pathogens. Specifically, Far UV-C has been shown to be highly effective for inactivation of airborne pathogens;yet this same radiation has minimal potential to cause damage to human skin and eye tissues. Critically, unlike UV-B, Far UV-C radiation does not substantially penetrate the dead cell layer of skin (stratum corneum) and does not reach germinative cells in the basal layer. Similarly, Far UV-C radiation does not substantially penetrate through corneal epithelium of the eye, thereby preventing exposure of germinative cells within the eye. The most common source of Far UV-C radiation is the krypton chloride excimer (KrCl*) lamp, which has a primary emission centered at 222 nm. Ozone production from KrCl* lamps is modest, such that control of indoor ozone from these systems can be accomplished easily using conventional ventilation systems. This set of characteristics offers the potential for Far UV-C devices to be used in occupied spaces, thereby allowing for improved effectiveness for inactivation of airborne pathogens, including those that are responsible for COVID-19. © 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.

8.
Sci Total Environ ; 869: 161848, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2211421

ABSTRACT

The COVID-19 pandemic has promoted interest in using devices emitting ultraviolet-C (UVC) irradiation (200-280 nm) for surface disinfection to reduce pathogen transmission, especially in occupied public spaces. While UVC devices have been shown to be highly effective against various pathogens, there are safety concerns when using conventional UVC devices for surface disinfection, including human exposure of reflected UVC irradiation and ozone generation. Emerging Far UVC devices (emitting at 200-230 nm), like the krypton chloride (KrCl*) excimer, have the potential to be safely applied in occupied spaces due to their minimal adverse effects on skin and eyes. In this study, UV reflection of 21 common materials was documented and compared using a filtered KrCl* excimer (installed with a bandpass filter at 222 nm), an unfiltered KrCl* excimer, and a conventional low-pressure mercury vapor lamp. The safety of Far UVC devices was evaluated based on the irradiance and spectrum of reflected UV irradiation and ozone generation measured at various locations around the device. Our results show that most common materials can reflect UV irradiation, among which some metals tend to have greater reflection. The Far UVC devices, especially the filtered KrCl* excimer, should be safe to be applied in occupied spaces for effective surface disinfection, with limited ozone generation and no health risk from reflected UV irradiation. However more caution is needed when using unfiltered KrCl* devices and conventional UV 254 nm light. This study provides urgently needed data on UV reflection of common materials and guidance for safety assessments of UVC devices for surface disinfection in occupied spaces.


Subject(s)
COVID-19 , Disinfection , Humans , Disinfection/methods , Pandemics , Ultraviolet Rays , Skin
9.
J Hazard Mater Adv ; 8: 100183, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2178972

ABSTRACT

The COVID-19 pandemic highlighted public awareness of airborne disease transmission in indoor settings and emphasized the need for reliable air disinfection technologies. This increased awareness will carry in the post-pandemic era along with the ever-emerging SARS-CoV variants, necessitating effective and well-defined protocols, methods, and devices for air disinfection. Ultraviolet (UV)-based air disinfection demonstrated promising results in inactivating viral bioaerosols. However, the reported data diversity on the required UVC doses has hindered determining the best UVC practices and led to confusion among the public and regulators. This article reviews available information on critical parameters influencing the efficacy of a UVC air disinfection system and, consequently, the required dose including the system's components as well as operational and environmental factors. There is a consensus in the literature that the interrelation of humidity and air temperature has a significant impact on the UVC susceptibility, which translate to changing the UVC efficacy of commercialized devices in indoor settings under varying conditions. Sampling and aerosolization techniques reported to have major influence on the result interpretation and it is recommended to use several sampling methods simultaneously to generate comparable and conclusive data. We also considered the safety concerns and the potential safe alternative of UVC, far-UVC. Finally, the gaps in each critical parameter and the future research needs of the field are represented. This paper is the first step to consolidating literature towards developing a standard validation protocol for UVC air disinfection devices which is determined as the one of the research needs.

10.
GMS Hyg Infect Control ; 17: Doc20, 2022.
Article in English | MEDLINE | ID: covidwho-2121321

ABSTRACT

Background: The measures implemented against the coronavirus pandemic also led to a sharp decline in influenza infections in the 2020/2021 flu season. In the meantime, however, the number of influenza infections has risen again; it is known from history that influenza viruses can also trigger severe pandemics. Therefore, we investigated the efficacy of ultraviolet radiation in the spectral range of 200-400 nm for inactivating influenza viruses. Materials and methods: The scientific literature was searched for published ultraviolet (UV) irradiation experiments with influenza viruses and the results were standardized by determining the lg-reduction dose. The results were then sorted and analyzed by virus type and wavelength as far as possible. Results: The scope of the published data sets was limited and revealed large variations with regard to the lg-reduction dose. Only for experiments with influenza viruses in liquid media in the UVC spectral range around 260 nm - the emission range of commonly-used mercury vapor lamps - was there sufficient data to compare virus types. No significant difference between the virus (sub-) types was observed. The lg-reduction dose in this spectral range is 1.75 mJ/cm2 (median). It was also shown that influenza viruses are particularly sensitive in the far-UVC spectral range (200-230 nm). Conclusion: UVC, including far-UVC, is suited for influenza virus inactivation as long as the viruses are in UVC-transparent materials. A large difference in the UV sensitivity of different influenza viruses from the last approx. 100 years could not be detected. Thus, it is reasonable to assume that future influenza viruses will also be similarly UV-sensitive or that UV can also inactivate new influenza viruses.

11.
Workplace Health & Safety ; 70(9):431-431, 2022.
Article in English | Web of Science | ID: covidwho-2043085
12.
Chinese Journal of Lasers-Zhongguo Jiguang ; 49(15), 2022.
Article in English | Web of Science | ID: covidwho-2006271

ABSTRACT

Objective The ongoing coronavirus pandemic has propelled the need for new approaches to disinfection, especially for airborne viruses. The 254 nm emission of low-pressure vacuum lamps is known for its antimicrobial effect;however, its radiation is harmful to human health, causing skin cancer and cataracts. Some studies have shown that short-wavelength ultraviolet (UV) light in the spectral region of 200-230 nm (far-UVC) can inactivate pathogens without harming human cells. Thus, it has great prospects for many applications. Sufficient studies have proved the antibacterial performance of far-UVC band range in an excimer lamp emitting a peak wavelength of 222 nm light. Furthermore, laser light sources can realize long-distance transmission and complement the deficiency of excimer lamps in remote sterilization and disinfection. This study investigates the antibacterial effect of a self-developed far-UVC laser with a peak wavelength of 228 nm and hopes to provide a new technical approach for the inactivation of the novel coronavirus and other microbial pathogens. Methods Bacterial sample preparation: Escherichia coli (E. coli) widely exists naturally and is a pathogen of major focus in human public health defense. It is also one of the most drug-resistant species in the enterobacterium group. Therefore, it is often used in ultraviolet disinfection and environmental health research. Bacillus cereus (B. cereus), which is closely related to humans, causes food poisoning and cannot be eliminated by pasteurization or normal hygiene procedures due to the heat and acid resistance of its spores. Therefore, the strains used in this experiment are E. coli and B. cereus. E. coli and B. cereus are provided by the Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, and subsp. Kustaki HD-1, provided by the Environmental Microbial Ecology Laboratory of Hainan Normal University. Both strains are cultured in a nutrient agar medium and placed in an incubator at 35 degrees C for 1 day. Nutrient agar medium is provided by Guangdong Huankai Microbial Technology Co., LTD, China. UV irradiation source: the irradiation source is a self-developed all-solid-state 228 nm far-UVC laser, which provides UV irradiance of up to 35 mW/cm(2), and its spectral linewidth is less than 0.1 nm. The laser is realized by LD-pumped Nd3+ laser crystal, Q-switched technology, and nonlinear optical frequency conversion technology. All-solid-state lasers have the advantages of small size, high efficiency, good beam quality, high reliability, long life, and portability. 228 nm far-UVC laser sterilization: we input a certain concentration of 1 mL bacterial suspension sample into a high permeability UVC cuvette. The 228 nm laser irradiance of 0.1 mW/cm(2) is obtained by adjusting the laser output power and the placement of the colorimeter. E. coli suspension samples are irradiated for 5, 10, 15, and 20 s [Fig. 1 (b), and B. cereus suspension samples are irradiated for 15, 30, 45, and 60 s [Fig. 1(c)] at 228 nm far-UV light of 0.1 mW/cm(2). The experiment is repeated three times for each sample at the same irradiation dose. Results and Discussions Figs. 1 (b) and (c) show the distribution of bacteria before and after 228 nm laser irradiation. The concentration of bacterial suspension samples in the control and irradiated groups is determined using the nutrient agar plate counting method. The detection results are shown in Table 1. When the E. coli suspension is irradiated by 228 nm laser for 10, 15, and 20 s (1, 1.5, and 2 mJ/cm(2)), the inactivation rates are 90. 7 %, 96.9 %, and 100 yo, respectively. When the B. cereus suspension is irradiated by 228 nm laser for 30, 45, and 60 s (3, 4. 5, and 6 mJ/cm(2)), the inactivation rates are 88. 4%, 98.6 %, and 100 %, respectively. Conclusions This experimental study shows that the use of several mJ/cm(2) doses of far-UVC 228 nm pulsed laser irradiation can effectively inactivate E. coli and B. cereus, whereas the use of excimer lamps requires dozens of mJ/cm(2) doses. Compared with the excimer light source, the far-UVC pulsed laser light source shows a stronger sterilization effect. The next step is to conduct experimental research on the inactivation of the influenza virus using a far-UVC 228 nm pulsed laser.

13.
Int J Mol Sci ; 23(16)2022 Aug 14.
Article in English | MEDLINE | ID: covidwho-1987831

ABSTRACT

Ultraviolet (UV) germicidal tools have recently gained attention as a disinfection strategy against the COVID-19 pandemic, but the safety profile arising from their exposure has been controversial and impeded larger-scale implementation. We compare the emerging 222-nanometer far UVC and 277-nanometer UVC LED disinfection modules with the traditional UVC mercury lamp emitting at 254 nm to understand their effects on human retinal cell line ARPE-19 and HEK-A keratinocytes. Cells illuminated with 222-nanometer far UVC survived, while those treated with 254-nanometer and 277-nanometer wavelengths underwent apoptosis via the JNK/ATF2 pathway. However, cells exposed to 222-nanometer far UVC presented the highest degree of DNA damage as evidenced by yH2AX staining. Globally, these cells displayed transcriptional changes in cell-cycle and senescence pathways. Thus, the introduction of 222-nanometer far UVC lamps for disinfection purposes should be carefully considered and designed with the inherent dangers involved.


Subject(s)
COVID-19 , Ultraviolet Rays , Animals , DNA Damage , Disinfection/methods , Humans , Mammals , Pandemics , Ultraviolet Rays/adverse effects
14.
Autonomous Systems: Sensors, Processing and Security for Ground, Air, Sea and Space Vehicles and Infrastructure 2022 ; 12115, 2022.
Article in English | Scopus | ID: covidwho-1949889

ABSTRACT

With the global coronavirus pandemic still persisting, the repeated disinfection of large spaces and small rooms has become a priority and matter of focus for researchers and developers. The use of ultraviolet light (UV) for disinfection is not new;however, there are new efforts to make the methods safer, more thorough, and automated. Indeed, continuous very low dose-rate far-UVC light in indoor public locations is a promising, safe and inexpensive tool to reduce the spread of airborne-mediated microbial diseases. This paper investigates the problem of disinfecting surfaces using autonomous mobile robots equipped with UV light towers. In order to demonstrate the feasibility of our autonomous disinfection framework, we also present a teleoperated robotic prototype. It consists of a robotic rover unit base, on which two separate UV light towers carrying 254 nm UVC and 222 nm far-UVC lights are mounted. It also includes a live-feed camera for remote operation, as well as power and communication electronics for the remote operation of the UV lamps. The 222 nm far-UVC light has been recently shown to be non-inammatory and non-photo carcinogenic when radiated on mammalian skin, while still sterilizing the coronavirus on irradiated surfaces. With far-UVC light, disinfection robots may no longer require the evacuation of spaces to be disinfected. The robot demonstrates promising disinfection performance and potential for future autonomous applications. © 2022 SPIE. All rights reserved.

15.
Natl Acad Sci Lett ; 45(4): 343-348, 2022.
Article in English | MEDLINE | ID: covidwho-1943493

ABSTRACT

The proposed paper discusses Far UVC could assassinate microbes without harming healthy tissues. The plasma ion generation will increase the ion (O2 -) generation in abundance along with hydrogen ion (H+), and at the same time, the negative hydroxyl radical (OH-) formed will merge with the positive (H+) ion of the virus to break the structure of it. The silver nanoparticle which is present in the diffuser with thermostat support is very effective for destroying the microbial elements by heating the gel present within the diffuser. The gel will mix in the environment, and it will also increase the activity of T cell generation and act as an immunoglobulin booster in the human body while inhaling it. In the proposed device, we are using warm humidified CO2 strategic therapy in low dose which is able to suppress any microbial element like SARS-CoV2.

16.
J Occup Environ Hyg ; 19(9): 524-537, 2022 09.
Article in English | MEDLINE | ID: covidwho-1931709

ABSTRACT

The emergence of COVID-19 and its corresponding public health burden has prompted industries to rapidly implement traditional and novel control strategies to mitigate the likelihood of SARS-CoV-2 transmission, generating a surge of interest and application of ultraviolet germicidal irradiation (UVGI) sources as disinfection systems. With this increased attention the need to evaluate the efficacy and safety of these types of devices is paramount. A field study of the early implementation of UVGI devices was conducted at the Space Needle located in Seattle, Washington. Six devices were evaluated, including four low-pressure (LP) mercury-vapor lamp devices for air and surface sanitation not designed for human exposure and two krypton chloride (KrCl*) excimer lamp devices to be operated on and around humans. Emission spectra and ultraviolet (UV) irradiance at different locations from the UV devices were measured and germicidal effectiveness against SARS-CoV-2 was estimated. The human safety of KrCl* excimer devices was also evaluated based on measured irradiance and estimated exposure durations. Our results show all LP devices emitted UV radiation primarily at 254 nm as expected. Both KrCl* excimers emitted far UVC irradiation at 222 nm as advertised but also emitted at longer, more hazardous wavelengths (228 to 262 nm). All LP devices emitted strong UVC irradiance, which was estimated to achieve three log reduction of SARS-CoV-2 within 10 sec of exposure at reasonable working distances. KrCl* excimers, however, emitted much lower irradiance than needed for effective disinfection of SARS-CoV-2 (>90% inactivation) within the typical exposure times. UV fluence from KrCl* excimer devices for employees was below the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values (TLVs) under the reported device usage and work shifts. However, photosensitive individuals, human susceptibility, or exposure to multiple UV sources throughout a worker's day, were not accounted for in this study. Caution should be used when determining the acceptability of UV exposure to workers in this occupational setting and future work should focus on UVGI sources in public settings.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Disinfection/methods , Humans , Public Health , Ultraviolet Rays
17.
Viruses ; 14(4)2022 03 25.
Article in English | MEDLINE | ID: covidwho-1820404

ABSTRACT

Recent research using UV radiation with wavelengths in the 200-235 nm range, often referred to as far-UVC, suggests that the minimal health hazard associated with these wavelengths will allow direct use of far-UVC radiation within occupied indoor spaces to provide continuous disinfection. Earlier experimental studies estimated the susceptibility of airborne human coronavirus OC43 exposed to 222-nm radiation based on fitting an exponential dose-response curve to the data. The current study extends the results to a wider range of doses of 222 nm far-UVC radiation and uses a computational model coupling radiation transport and computational fluid dynamics to improve dosimetry estimates. The new results suggest that the inactivation of human coronavirus OC43 within our exposure system is better described using a bi-exponential dose-response relation, and the estimated susceptibility constant at low doses-the relevant parameter for realistic low dose rate exposures-was 12.4 ± 0.4 cm2/mJ, which described the behavior of 99.7% ± 0.05% of the virus population. This new estimate is more than double the earlier susceptibility constant estimates that were based on a single-exponential dose response. These new results offer further evidence as to the efficacy of far-UVC to inactivate airborne pathogens.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Disinfection/methods , Humans , SARS-CoV-2 , Ultraviolet Rays , Virus Inactivation
18.
10th International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications, ICRAMET 2021 ; : 158-161, 2021.
Article in English | Scopus | ID: covidwho-1709132

ABSTRACT

Emerging of the Coronavirus Disease 2019 (COVID-19) since the end of 2019, calls scientist to develop various ways to combat the disease. One of the possible ways is to develop human friendly sterilization room. We report characterization of far UV-C beam propagation in air medium. Several distances and radiation angles of the far UV-C beam was experimentally measured using an UV optical spectrum meter. As a result, the beam has irradiance loss of 0.02 - 0.2 dB/cm and beam radiation angle of about 150 degree for vertical and 180 degree for horizontal. The far UV-C beam can be used for airborne virus sterilization and safe to human skin or eyes. The exposure time varies to the distance from the UVC source. © 2021 IEEE.

19.
Appl Environ Microbiol ; 87(22): e0153221, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1494943

ABSTRACT

Effective disinfection technology to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can help reduce viral transmission during the ongoing COVID-19 global pandemic and in the future. UV devices emitting UVC irradiation (200 to 280 nm) have proven to be effective for virus disinfection, but limited information is available for SARS-CoV-2 due to the safety requirements of testing, which is limited to biosafety level 3 (BSL3) laboratories. In this study, inactivation of SARS-CoV-2 in thin-film buffered aqueous solution (pH 7.4) was determined across UVC irradiation wavelengths of 222 to 282 nm from krypton chloride (KrCl*) excimers, a low-pressure mercury-vapor lamp, and two UVC light-emitting diodes. Our results show that all tested UVC devices can effectively inactivate SARS-CoV-2, among which the KrCl* excimer had the best disinfection performance (i.e., highest inactivation rate). The inactivation rate constants of SARS-CoV-2 across wavelengths are similar to those for murine hepatitis virus (MHV) from our previous investigation, suggesting that MHV can serve as a reliable surrogate of SARS-CoV-2 with a lower BSL requirement (BSL2) during UV disinfection tests. This study provides fundamental information on UVC's action on SARS-CoV-2 and guidance for achieving reliable disinfection performance with UVC devices. IMPORTANCE UV light is an effective tool to help stem the spread of respiratory viruses and protect public health in commercial, public, transportation, and health care settings. For effective use of UV, there is a need to determine the efficiency of different UV wavelengths in killing pathogens, specifically SARS-CoV-2, to support efforts to control the ongoing COVID-19 global pandemic and future coronavirus-caused respiratory virus pandemics. We found that SARS-CoV-2 can be inactivated effectively using a broad range of UVC wavelengths, and 222 nm provided the best disinfection performance. Interestingly, 222-nm irradiation has been found to be safe for human exposure up to thresholds that are beyond those effective for inactivating viruses. Therefore, applying UV light from KrCl* excimers in public spaces can effectively help reduce viral aerosol or surface-based transmissions.


Subject(s)
Disinfection/methods , SARS-CoV-2/radiation effects , Virus Inactivation/radiation effects , Animals , Bacteriophage phi 6/radiation effects , COVID-19/prevention & control , COVID-19/transmission , Coronavirus 229E, Human/radiation effects , Disinfection/instrumentation , Humans , Mice , Murine hepatitis virus/radiation effects , Ultraviolet Rays
20.
Viruses ; 13(8)2021 07 23.
Article in English | MEDLINE | ID: covidwho-1325790

ABSTRACT

Transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurs through respiratory droplets passed directly from person to person or indirectly through fomites, such as common use surfaces or objects. The aim of this study was to determine the virucidal efficacy of blue LED (405 nm) and far-UVC (222 nm) light in comparison to standard UVC (254 nm) irradiation for the inactivation of feline infectious peritonitis virus (FIPV) on different matrices as a model for SARS-CoV-2. Wet or dried FIPV on stainless steel, plastic, or paper discs, in the presence or absence of artificial saliva, were exposed to various wavelengths of light for different time periods (1-90 min). Dual activity of blue LED and far-UVC lights were virucidal for most wet and dried FIPV within 4 to 16 min on all matrices. Individual action of blue LED and far-UVC lights were virucidal for wet FIPV but required longer irradiation times (8-90 min) to reach a 4-log reduction. In comparison, LED (265 nm) and germicidal UVC (254 nm) were virucidal on almost all matrices for both wet and dried FIPV within 1 min exposure. UVC was more effective for the disinfection of surfaces as compared to blue LED and far-UVC individually or together. However, dual action of blue LED and far-UVC was virucidal. This combination of lights could be used as a safer alternative to traditional UVC.


Subject(s)
COVID-19/virology , Coronavirus, Feline/radiation effects , Disinfection/methods , SARS-CoV-2/radiation effects , Animals , COVID-19/prevention & control , Cats , Coronavirus Infections/virology , Coronavirus, Feline/growth & development , Coronavirus, Feline/physiology , Disinfection/instrumentation , Humans , SARS-CoV-2/growth & development , SARS-CoV-2/physiology , Ultraviolet Rays , Virus Inactivation/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL